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Abstract. We consider, using Monte Carlo simulations, diffusion of particles on a square
lattice. The particles do not interact among themselves, except that at the same lattice site there
cannot be more thanN particles. Since the interactions in our model are a milder version of
the well known hard-core (HC) lattice gas, for whichN = 1, we decided to call our model the
soft-core (SC) lattice gas.

We find the dependence of the correlation factor on the concentration of completely filled
sites and show that the correlations decrease with increasingN . We calculate analytically and via
the Monte Carlo simulations the distribution function of the average number of sites occupied by
a given number of particles. The curves show that for our model the ‘particle–hole’ symmetry,
typical for the HC lattice gas, disappears. In addition, we have found in1D two regimes of
diffusion for N = 2. For shorter times the diffusion is anomalous, while for longer times it
becomes normal.

1. Introduction

Theoretical investigations of adatoms diffusion on metal surfaces have been carried out
for many years (see e.g. [1, 2]). Recently computer simulations have come to play an
increasingly important role. Generally the Monte Carlo method is used and the system of
diffusing particles is reduced to the lattice gas model [3–5]. One of the essential ingredients
of the model is the exclusion principle, also referred to as the hard core (HC), consisting
in forbidding two particles to occupy the same site. There are numerous variations played
around theHC lattice gas theme (for a review see e.g. [4, 6]), but theHC restriction remains.
In a recent work Kutneret al [7] lifted the limitation. In their model an arbitrary number of
particles is allowed to stay at the same time in the same site. There is also a well defined
rule governing the order of leaving such a multiply occupied site. The authors call the
model a ‘bosonic lattice gas’.

In the following we decided to consider a model in which at each lattice site we allow
for a maximum ofN particles. One may think of the lattice sites as being substrate atoms
and particles being adatoms. It is known from experiment [8] that if the diffusing adatoms
are small (like e.g. Li atoms), then it is possible that a few of them may be found at the
same time around one, bigger, e.g. Mo, substrate atom. The model may also prove useful
in describing the formation and diffusion of Te dimers on the Mo(110) plane [9] as well as
the transport in a material with fine pores where more than one particle of the fluid may
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be blocked [6]. Still another application of the model is the description of diffusion for
systems where the deposit of adatoms exceeds, at some sites, the monolayer [2].

Since theHC repulsion is much weakened in our model we call this kind of interaction
soft core (SC).

In this paper we consider the simplest version of our model, i.e. apart from theSC

interactions the adatoms do not feel each other. In more realistic systems one would like
to add other forms of interaction, but here we want to study the effect on diffusion of the
weak form of the exclusion principle. Our model is a purely classical lattice gas. It is not
directly connected, even forN → ∞, to the bosonic lattice gas considered by Kutneret
al [7]. The difference lies in additional rules governing ordering of particles at a given
site, imposed in [7]. No such rule is present in our model but if two neighbouring sites are
occupied by less thanN particles each, the particles from the two sites can move. If in
one site there areN particles and in the second less thanN , then a particle from the first
site can jump to the second, but not vice versa. For simplicity, we assume jumps of the
particles only to the nearest neighbours. For such a model we want to find the dependence
of the correlation factor,f , on the concentration,c, of particles (adatoms) andN . There
are theoretical [10, 11] and Monte Carlo [5, 12] results for theHC model. The correlation
factor can be defined there via the diffusion coefficient for tracer diffusion,D∗, and for
random walk,DRW:

D∗(c) = f (c)(1 − c)DRW = f (c)v(c)DRW (1)

where the concentration,c, is defined here as the number of particles,M, present in the
system divided by the number of sites,N, andv(c) = 1 − c, is called the site availability
factor (lattice constant and total jump rate were set as unity here). For a lattice of dimension
d we have the asymptotic formulae

DRW = 1

2d
and D∗ = 〈R2(t)〉

2dt
(2)

where〈R2(t)〉 is the average square distance covered by a diffusing particle in timet , hence
f (c) may be rewritten as

f (c) = 〈R2(t)〉
(1 − c)t

. (3)

Sankey and Fedders [10] and later Nakazato and Kitahara [11] and Beijeren and Kutner
[3] derived approximate formulae for the correlation factor of theHC lattice gas in2D. The
formulae yield correct limiting values (i.e. forc → 0 andc → 1) and are approximate in
between. Monte Carlo simulations on the square lattice done by Kutner [12] confirm the
behaviour off predicted by the approximate analytical formulae as a nearly straight line
dropping fromf (c = 0) = 1 to f (c = 1) = 0.474 748. Equation (3) is no longer valid
for our SC model, since the concentration,c, of particles differs from the concentration of
completely filled sites. We define the concentration,c, of particles in theSC system as

c = M

NN
.

It is seen thatc 6 1.
For increasingN we expect the particles to be more and more independent for all values

of c, since then the back-jump correlations become less and less important. ForN → ∞
one should havef (c) → 1, and the diffusion should reduce to the random walk,D∗ should
tend towardsDRW. This is fulfilled by the renewal definition below.
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Let us introducecf = cf (c, N ) the concentration of completely filled sites and
cv = 1− cf the concentration of vacancies, i.e. sites occupied by less thanN particles. An
empty site counts as a single vacancy, irrespective of the value ofN . With these definitions
we rewrite (3) as

f (cf ) = 〈R2(t)〉
cv(c, N )t

. (4)

This is thead hocasymptotic formula we use in our simulations.

2. Occupation distribution functions

We now want to find the dependence ofcf andcv on physical parameters likec andN or,
equivalently, the distribution ofM identical particles amongN sites, each accommodating
up toN particles. This is a combinatorial problem of counting the number of distinct ways
in which M objects can be placed in a total ofN distinct boxes. To put it in a different
way—what is the most probable number of boxes occupied byI objects for givenN, M

and N ?
Let us denote byh(N , N, M) the number of all possible distributions ofM identical

objects inN boxes with maximum capacity of a box equal toN and byg(N , N, M; I ) the
number of boxes occupied by exactlyI objects in all possible distributions, i.e.

h(N , N, M) =
∑

σ1+···+σN =M

M!

σ1!σ2! . . . σN !
(5)

g(N , N, M; I ) =
∑

σ1+···+σN =M

(δσ1,I + · · · + δσN ,I )M!

σ1!σ2! . . . σN !
(6)

whereσi(= 0, 1, . . . ,N ) is the occupancy of theith site andδσj ,I is the Kronecker delta.
The occupation distribution function we are looking for is given by

W(N , N, M; I ) = g(N , N, M; I )

Nh(N , N, M)
(7)

whereW(N , N, M; I ) is the average number of boxes occupied byI particles. Hence,
after simple algebra we get from (7)

g(N , N, M; I ) = N

(
M

I

)
h(N , N − 1, M − I ) . (8)

Hence

W(N , N, M; I ) =
(

M

I

)
h(N , N − 1, M − I )

h(N , N, M)
. (9)

Using the saddle-point method (see e.g. [13]) we get

W(N , N, M; I ) = zI

I !

(
1 + z + · · · + zN

N !

)−1

(10)

with the condition

cN =
(

1 + z + · · · + zN−1

N !

)
(11)

where W(N , N, M; I ) is the concentrationcI of the lattice sites occupied exactly byI
particles.
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Figure 1. Percentage of sites,cI , occupied by two particles,I = 2; one particle,I = 1 and
empty, I = 0, versus the concentration of particles,c, for N = 2. The full curve shows data
from (13), symbols—data from the simulations.

In the particular case ofN = 2 we get from (11) the following expression forz:

z = −2(2c − 1) − √
1

4(c − 1)
(12)

where

1 = 4(2c − 1)2 − 32(c − 1) .

This gives, with (10), the concentrations,cI , of sites occupied byI particles

c0 = W(2, N, M, 0) = 3 − 2c − √
1 + 4c − 4c2

2

c1 = W(2, N, M, 1) =
√

1 + 4c − 4c2 − 1 (13)

c2 = W(2, N, M, 2) = 1 + 2c − √
1 + 4c − 4c2

2
.

These formulae have been used in obtaining figure 1. For higher values ofN
the formulae become much more complicated and one gets them numerically from
equations (10) and (11).

3. Results and conclusions

Formulae (13) have been checked by simulations. The comparison of theoretical and
simulation results, forN = 2, is shown in figure 1, where the dependence ofcI (I = 0, 1, 2)
on the total concentration of particles in the system,c, has been presented. The agreement
is excellent. Figure 2 shows the data for the occupation distribution forN = 5. In this
case only the simulation results are presented. One can notice that the symmetry of the
curves with respect toc = 0.5, present forN = 2 andHC, is lost here. This is so because
the ‘particle–hole’ symmetry typical for theHC lattice gas is not present in our model for
N > 2. We do not impose any additional rules telling which one of the particles present at
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Figure 2. Same as in figure 1 but forN = 5 andcI with I = 0, 1, 2, 3, 4, 5. Only the results
of the simulations are shown. Full curves are to guide the eye only.
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Figure 3. Correlation factor,f , versus concentration,cf , of completely filled sites for
different N .

a given site should be displaced. ForN > 2 we can have a move of a particle between two
neighbouring sites, neither of which is completely filled up. This would not correspond to
any movement of a vacancy, in contrast to theHC case where a move of a vacancy always
accompanies a particle’s move.

Figure 3 shows the change of the correlation factor versus concentration of completely
filled sites, caused by differentN . As expected, with increasingN the particles are
becoming more and more free, with decreasing correlations, i.e.f (cf ) → 1. The change
in the correlation is inversely proportional toN . The reason for the diminishing of the
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Figure 4. Correlation factor,f (c = 1), versus the maximum number of particles,N , allowed
at a site.

correlations with increasingN lies in the reduction of the restrictive character of the
occupied sites.

Figure 4 shows how the correlation factor,f (c = 1), increases, i.e. the particles become
more and more free, with increasingN . The points have been obtained from linear fits to
the respective curves in figure 3.

3.1. Diffusion in1D

We have also investigated the diffusion in the1D SC model. It is known [14] that theHC

lattice gas shows anomalous diffusion in1D, i.e. the exponentα in the relation

〈R2(t)〉 ∼ tα (14)

takes the valueα = 0.5 in 1D HC. We have been looking for a similar effect in the closest
1D SC version, i.e.N = 2. For simulation we have used a lattice of 102 and 103 sites
with periodic boundary conditions. The concentration of diffusing particles varied between
c = 0.1 and c = 0.9. Averaging was done over 106 particles. The results obtained for
L = 103 are summarized in figure 5. Data for otherL do not differ in any significant way.

As can be seen, there are two regimes of diffusion. At shorter times, up to 103 MCS (in
oneMCS each particle, on average, is chosen for a displacement) the diffusion is anomalous
and the value ofα decreases with concentration. This is understandable since for largec

the blocking effect, even for short times (see below) is more pronounced. With increasing
time the diffusion becomes less and less dependent onc, andα → 1. This is so since only
for a short time is a particle really blocked by fully occupied sites on its left and right.
With passing time at least one of the sites will become occupied by one particle only and
the particle becomes ‘liberated’. The particle may therefore interchange its location along
the diffusion axis with any other particle. This is quite different from theHC case, where
the order of particles remains unchanged with time. IfN > 2 the diffusion inSC is always
normal, i.e.α = 1. Obviously to determine the exponentα to a good degree of accuracy
much finer simulations would be needed. Here we did not aim for such standards but only
wanted to get a reliable estimate.
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Figure 5. Diffusion exponentα versus concentration,c, of diffusing particles in theSC model
with N = 2, full circles were calculated from the simulations between 102 and 103 MCS. Full
diamonds between 103 and 104 MCS and full squares between 104 and 2× 104 MCS. The linear
dimension of the system wasL = 103 sites. Open circles are the data from a smaller system
(L = 102 sites), time between 102 and 103 MCS. In all cases averaging was over 106 particles.

0.0 0.2 0.4 0.6 0.8
concentration c

0.49

0.50

0.51

0.52

0.53

α

Figure 6. The exponentα versusc for HC lattice gas (N = 1). HereL = 103, time between
103 and 104 MCS. Averaging is over 106 particles.

It should also be noted that a similar two-region diffusion has been found for tracer
diffusion in ordered structures by Sadiq and Binder [15].

We have also estimated theα exponent in the1D HC lattice gas. For analogous
conditions, L = 103 and 103 to 104 MCS, we obtained the results shown in figure 6.
As expected, for the small concentrations and time intervals considered, the particles do not
feel theHC limitations so strongly andα > 0.5.
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